Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
Add more filters










Publication year range
1.
J Biol Chem ; 299(8): 105030, 2023 08.
Article in English | MEDLINE | ID: mdl-37442239

ABSTRACT

Human growth hormone (hGH) is a pituitary-derived endocrine protein that regulates several critical postnatal physiologic processes including growth, organ development, and metabolism. Following adulthood, GH is also a regulator of multiple pathologies like fibrosis, cancer, and diabetes. Therefore, there is a significant pharmaceutical interest in developing antagonists of hGH action. Currently, there is a single FDA-approved antagonist of the hGH receptor (hGHR) prescribed for treating patients with acromegaly and discovered in our laboratory almost 3 decades ago. Here, we present the first data on the structure and function of a new set of protein antagonists with the full range of hGH actions-dual antagonists of hGH binding to the GHR as well as that of hGH binding to the prolactin receptor. We describe the site-specific PEG conjugation, purification, and subsequent characterization using MALDI-TOF, size-exclusion chromatography, thermostability, and biochemical activity in terms of ELISA-based binding affinities with GHR and prolactin receptor. Moreover, these novel hGHR antagonists display distinct antagonism of GH-induced GHR intracellular signaling in vitro and marked reduction in hepatic insulin-like growth factor 1 output in vivo. Lastly, we observed potent anticancer biological efficacies of these novel hGHR antagonists against human cancer cell lines. In conclusion, we propose that these new GHR antagonists have potential for development towards multiple clinical applications related to GH-associated pathologies.


Subject(s)
Human Growth Hormone , Receptors, Prolactin , Humans , Carrier Proteins/chemistry , Cell Line , Human Growth Hormone/antagonists & inhibitors , Human Growth Hormone/chemistry , Prolactin/chemistry , Receptors, Prolactin/antagonists & inhibitors , Receptors, Prolactin/chemistry , Receptors, Somatotropin/chemistry , Polyethylene Glycols/chemistry
2.
Endocr Relat Cancer ; 30(9)2023 09 01.
Article in English | MEDLINE | ID: mdl-37283510

ABSTRACT

Despite landmark advances in cancer treatments over the last 20 years, cancer remains the second highest cause of death worldwide, much ascribed to intrinsic and acquired resistance to the available therapeutic options. In this review, we address this impending issue, by focusing the spotlight on the rapidly emerging role of growth hormone action mediated by two intimately related tumoral growth factors - growth hormone (GH) and insulin-like growth factor 1 (IGF1). Here, we not only catalog the scientific evidences relating specifically to cancer therapy resistance inflicted by GH and IGF1 but also discuss the pitfalls, merits, outstanding questions and the future need of exploiting GH-IGF1 inhibition to tackle cancer treatment successfully.


Subject(s)
Human Growth Hormone , Neoplasms , Humans , Human Growth Hormone/therapeutic use , Insulin-Like Growth Factor I/metabolism , Neoplasms/drug therapy , Growth Hormone/metabolism
3.
Pituitary ; 26(4): 437-450, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37353704

ABSTRACT

BACKGROUND: Lifelong reduction of growth hormone (GH) action extends lifespan and improves healthspan in mice. Moreover, congenital inactivating mutations of GH receptor (GHR) in mice and humans impart resistance to age-associated cancer, diabetes, and cognitive decline. To investigate the consequences of GHR disruption at an adult age, we recently ablated the GHR at 6-months of age in mature adult (6mGHRKO) mice. We found that both, male and female 6mGHRKO mice have reduced oxidative damage, with males 6mGHRKO showing improved insulin sensitivity and cancer resistance. Importantly, 6mGHRKO females have an extended lifespan compared to controls. OBJECTIVE AND METHODS: To investigate the possible mechanisms leading to health improvements, we performed RNA sequencing using livers from male and female 6mGHRKO mice and controls. RESULTS: We found that disrupting GH action at an adult age reduced the gap in liver gene expression between males and females, making gene expression between sexes more similar. However, there was still a 6-fold increase in the number of differentially expressed genes when comparing male 6mGHRKO mice vs controls than in 6mGHRKO female vs controls, suggesting that GHR ablation affects liver gene expression more in males than in females. Finally, we found that lipid metabolism and xenobiotic metabolism pathways are activated in the liver of 6mGHRKO mice. CONCLUSION: The present study shows for the first time the specific hepatic gene expression profile, cellular pathways, biological processes and molecular mechanisms that are driven by ablating GH action at a mature adult age in males and females. Importantly, these results and future studies on xenobiotic metabolism may help explain the lifespan extension seen in 6mGHRKO mice.


Subject(s)
Receptors, Somatotropin , Xenobiotics , Humans , Adult , Mice , Male , Female , Animals , Infant , Xenobiotics/metabolism , Receptors, Somatotropin/genetics , Receptors, Somatotropin/metabolism , Liver/metabolism , Longevity/genetics , Gene Expression , Growth Hormone/metabolism
4.
FEBS Open Bio ; 13(7): 1346-1356, 2023 07.
Article in English | MEDLINE | ID: mdl-37163287

ABSTRACT

Chagas disease (CD) is one of the most devasting parasitic diseases in the Americas, affecting 7-8 million people worldwide. In vitro and in vivo experiments have demonstrated that growth hormone (GH) serum levels decrease as CD progresses. Interestingly, inactivating mutations in the GH receptor in humans result in Laron syndrome (LS), a clinical entity characterized by increased serum levels of GH and decreased insulin growth factor-1 (IGF-1). The largest cohort of LS subjects lives in the southern provinces of Ecuador. Remarkably, no clinical CD cases have been reported in these individuals despite living in highly endemic areas. In the current ex vivo study, we employed serum from GHR-/- mice, also known as LS mice (a model of GH resistance with high GH and low IGF-1 levels), and serum from bovine GH (bGH) transgenic mice (high GH and IGF-1), to test the effect on Trypanosoma cruzi infection. We infected mouse fibroblast L-cells with T. cruzi (etiological CD infectious agent) and treated them with serum from each mouse type. Treatment with GHR-/- serum (LS mice) significantly decreased L-cell infection by 28% compared with 48% from control wild-type mouse serum (WT). Treatment with bGH mouse serum significantly decreased infection of cells by 41% compared with 54% from WT controls. Our results suggest that high GH and low IGF-1 in blood circulation, as typically seen in LS individuals, confer partial protection against T. cruzi infection. This study is the first to report decreased T. cruzi infection using serum collected from two modified mouse lines with altered GH action (GHR-/- and bGH).


Subject(s)
Chagas Disease , Insulin-Like Growth Factor I , Mice , Humans , Animals , Cattle , Growth Hormone/genetics , Receptors, Somatotropin/genetics , Mice, Transgenic , Chagas Disease/prevention & control
5.
Endocrinology ; 164(5)2023 03 13.
Article in English | MEDLINE | ID: mdl-36869769

ABSTRACT

Fibrosis is a pathological state caused by excess deposition of extracellular matrix proteins in a tissue. Male bovine growth hormone (bGH) transgenic mice experience metabolic dysfunction with a marked decrease in lifespan and with increased fibrosis in several tissues including white adipose tissue (WAT), which is more pronounced in the subcutaneous (Sc) depot. The current study expanded on these initial findings to evaluate WAT fibrosis in female bGH mice and the role of transforming growth factor (TGF)-ß in the development of WAT fibrosis. Our findings established that female bGH mice, like males, experience a depot-dependent increase in WAT fibrosis, and bGH mice of both sexes have elevated circulating levels of several markers of collagen turnover. Using various methods, TGF-ß signaling was found unchanged or decreased-as opposed to an expected increase-despite the marked fibrosis in WAT of bGH mice. However, acute GH treatments in vivo, in vitro, or ex vivo did elicit a modest increase in TGF-ß signaling in some experimental systems. Finally, single nucleus RNA sequencing confirmed no perturbation in TGF-ß or its receptor gene expression in any WAT cell subpopulations of Sc bGH WAT; however, a striking increase in B lymphocyte infiltration in bGH WAT was observed. Overall, these data suggest that bGH WAT fibrosis is independent of the action of TGF-ß and reveals an intriguing shift in immune cells in bGH WAT that should be further explored considering the increasing importance of B cell-mediated WAT fibrosis and pathology.


Subject(s)
Growth Hormone , Transforming Growth Factor beta , Mice , Animals , Cattle , Male , Female , Mice, Transgenic , Transforming Growth Factor beta/metabolism , Growth Hormone/metabolism , Adipose Tissue, White , Fibrosis , Adipose Tissue/metabolism
6.
Arthritis Rheumatol ; 75(7): 1139-1151, 2023 07.
Article in English | MEDLINE | ID: mdl-36762426

ABSTRACT

OBJECTIVE: Many patients with acromegaly, a hormonal disorder with excessive growth hormone (GH) production, report pain in joints. We undertook this study to characterize the joint pathology of mice with overexpression of bovine GH (bGH) or a GH receptor antagonist (GHa) and to investigate the effect of GH on regulation of chondrocyte cellular metabolism. METHODS: Knee joints from mice overexpressing bGH or GHa and wild-type (WT) control mice were examined using histology and micro-computed tomography for osteoarthritic (OA) pathologies. Additionally, cartilage from bGH mice was used for metabolomics analysis. Mouse primary chondrocytes from bGH and WT mice, with or without pegvisomant treatment, were used for quantitative polymerase chain reaction and Seahorse respirometry analyses. RESULTS: Both male and female bGH mice at ~13 months of age had increased knee joint degeneration, which was characterized by loss of cartilage structure, expansion of hypertrophic chondrocytes, synovitis, and subchondral plate thinning. The joint pathologies were also demonstrated by significantly higher Osteoarthritis Research Society International and Mankin scores in bGH mice compared to WT control mice. Metabolomics analysis revealed changes in a wide range of metabolic pathways in bGH mice, including beta-alanine metabolism, tryptophan metabolism, lysine degradation, and ascorbate and aldarate metabolism. Also, bGH chondrocytes up-regulated fatty acid oxidation and increased expression of Col10a. Joints of GHa mice were remarkably protected from developing age-associated joint degeneration, with smooth articular joint surface. CONCLUSION: This study showed that an excessive amount of GH promotes joint degeneration in mice, which was associated with chondrocyte metabolic dysfunction and hypertrophic changes, whereas antagonizing GH action through a GHa protects mice from OA development.


Subject(s)
Acromegaly , Cartilage, Articular , Osteoarthritis, Knee , Mice , Animals , Male , Female , Cattle , Chondrocytes/metabolism , Acromegaly/metabolism , Acromegaly/pathology , X-Ray Microtomography , Growth Hormone/metabolism , Cartilage, Articular/metabolism , Mice, Transgenic
7.
Front Oncol ; 12: 936145, 2022.
Article in English | MEDLINE | ID: mdl-35865483

ABSTRACT

Knockdown of GH receptor (GHR) in melanoma cells in vitro downregulates ATP-binding cassette-containing (ABC) transporters and sensitizes them to anti-cancer drug treatments. Here we aimed to determine whether a GHR antagonist (GHRA) could control cancer growth by sensitizing tumors to therapy through downregulation of ABC transporters in vivo. We intradermally inoculated Fluc-B16-F10 mouse melanoma cells into GHA mice, transgenic for a GHR antagonist (GHRA), and observed a marked reduction in tumor size, mass and tumoral GH signaling. Moreover, constitutive GHRA production in the transgenic mice significantly improved the response to cisplatin treatment by suppressing expression of multiple ABC transporters and sensitizing the tumors to the drug. We confirmed that presence of a GHRA and not a mere absence of GH is essential for this chemo-sensitizing effect using Fluc-B16-F10 allografts in GH knockout (GHKO) mice, where tumor growth was reduced relative to that in GH-sufficient controls but did not sensitize the tumor to cisplatin. We extended our investigation to hepatocellular carcinoma (HCC) using human HCC cells in vitro and a syngeneic mouse model of HCC with Hepa1-6 allografts in GHA mice. Gene expression analyses and drug-efflux assays confirm that blocking GH significantly suppresses the levels of ABC transporters and improves the efficacy of sorafenib towards almost complete tumor clearance. Human patient data for melanoma and HCC show that GHR RNA levels correlate with ABC transporter expression. Collectively, our results validate in vivo that combination of a GHRA with currently available anti-cancer therapies can be effective in attacking cancer drug resistance.

8.
Nat Rev Endocrinol ; 18(9): 558-573, 2022 09.
Article in English | MEDLINE | ID: mdl-35750929

ABSTRACT

Since its discovery nearly a century ago, over 100,000 studies of growth hormone (GH) have investigated its structure, how it interacts with the GH receptor and its multiple actions. These include effects on growth, substrate metabolism, body composition, bone mineral density, the cardiovascular system and brain function, among many others. Recombinant human GH is approved for use to promote growth in children with GH deficiency (GHD), along with several additional clinical indications. Studies of humans and animals with altered levels of GH, from complete or partial GHD to GH excess, have revealed several covert or hidden actions of GH, such as effects on fibrosis, cardiovascular function and cancer. In this Review, we do not concentrate on the classic and controversial indications for GH therapy, nor do we cover all covert actions of GH. Instead, we stress the importance of the relationship between GH and fibrosis, and how fibrosis (or lack thereof) might be an emerging factor in both cardiovascular and cancer pathologies. We highlight clinical data from patients with acromegaly or GHD, alongside data from cellular and animal studies, to reveal novel phenotypes and molecular pathways responsible for these actions of GH in fibrosis, cardiovascular function and cancer.


Subject(s)
Cardiovascular Diseases , Fibrosis/metabolism , Human Growth Hormone/metabolism , Neoplasms , Animals , Cardiovascular Diseases/metabolism , Child , Dwarfism, Pituitary/metabolism , Growth Hormone , Human Growth Hormone/therapeutic use , Humans , Neoplasms/metabolism
9.
Growth Horm IGF Res ; 64: 101460, 2022 06.
Article in English | MEDLINE | ID: mdl-35490602

ABSTRACT

OBJECTIVE: Chagas disease (CD) is caused by the protozoan parasite, Trypanosoma cruzi. It affects 7 to 8 million people worldwide and leads to approximately 50,000 deaths per year. In vitro and in vivo studies had demonstrated that Trypanosoma cruziinfection causes an imbalance in the hypothalamic-pituitary-adrenal (HPA) axis that is accompanied by a progressive decrease in growth hormone (GH) and prolactin (PRL) production. In humans, inactivating mutations in the GH receptor gene cause Laron Syndrome (LS), an autosomal recessive disorder. Affected subjects are short, have increased adiposity, decreased insulin-like growth factor-I (IGFI), increased serum GH levels, are highly resistant to diabetes and cancer, and display slow cognitive decline. In addition, CD incidence in these individuals is diminished despite living in highly endemic areas. Consequently, we decided to investigate the in vitro effect of GH/IGF-I on T. cruzi infection. DESIGN: We first treated the parasite and/or host cells with different peptide hormones including GH, IGFI, and PRL. Then, we treated cells using different combinations of GH/IGF-I attempting to mimic the GH/IGF-I serum levels observed in LS subjects. RESULTS: We found that exogenous GH confers protection against T. cruzi infection. Moreover, this effect is mediated by GH and not IGFI. The combination of relatively high GH (50 ng/ml) and low IGF-I (20 ng/ml), mimicking the hormonal pattern seen in LS individuals, consistently decreased T. cruzi infection in vitro. CONCLUSIONS: The combination of relatively high GH and low IGF-I serum levels in LS individuals may be an underlying condition providing partial protection against T. cruzi infection.


Subject(s)
Chagas Disease , Human Growth Hormone , Laron Syndrome , Chagas Disease/drug therapy , Growth Hormone/genetics , Humans , Insulin-Like Growth Factor I , Prolactin
10.
Pituitary ; 25(1): 1-51, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34797529

ABSTRACT

Much of our understanding of GH's action stems from animal models and the generation and characterization of genetically altered or modified mice. Manipulation of genes in the GH/IGF1 family in animals started in 1982 when the first GH transgenic mice were produced. Since then, multiple laboratories have altered mouse DNA to globally disrupt Gh, Ghr, and other genes upstream or downstream of GH or its receptor. The ability to stay current with the various genetically manipulated mouse lines within the realm of GH/IGF1 research has been daunting. As such, this review attempts to consolidate and summarize the literature related to the initial characterization of many of the known gene-manipulated mice relating to the actions of GH, PRL and IGF1. We have organized the mouse lines by modifications made to constituents of the GH/IGF1 family either upstream or downstream of GHR or to the GHR itself. Available data on the effect of altered gene expression on growth, GH/IGF1 levels, body composition, reproduction, diabetes, metabolism, cancer, and aging are summarized. For the ease of finding this information, key words are highlighted in bold throughout the main text for each mouse line and this information is summarized in Tables 1, 2, 3 and 4. Most importantly, the collective data derived from and reported for these mice have enhanced our understanding of GH action.


Subject(s)
Growth Hormone , Receptors, Somatotropin , Animals , Body Composition , Growth Hormone/genetics , Growth Hormone/metabolism , Insulin-Like Growth Factor I/genetics , Insulin-Like Growth Factor I/metabolism , Mice , Mice, Transgenic , Models, Animal , Receptors, Somatotropin/genetics , Receptors, Somatotropin/metabolism
11.
Aging Cell ; 20(12): e13506, 2021 12.
Article in English | MEDLINE | ID: mdl-34811874

ABSTRACT

Studies in multiple species indicate that reducing growth hormone (GH) action enhances healthy lifespan. In fact, GH receptor knockout (GHRKO) mice hold the Methuselah prize for the world's longest-lived laboratory mouse. We previously demonstrated that GHR ablation starting at puberty (1.5 months), improved insulin sensitivity and female lifespan but results in markedly reduced body size. In this study, we investigated the effects of GHR disruption in mature-adult mice at 6 months old (6mGHRKO). These mice exhibited GH resistance (reduced IGF-1 and elevated GH serum levels), increased body adiposity, reduced lean mass, and minimal effects on body length. Importantly, 6mGHRKO males have enhanced insulin sensitivity and reduced neoplasms while females exhibited increased median and maximal lifespan. Furthermore, fasting glucose and oxidative damage was reduced in females compared to males irrespective of Ghr deletion. Overall, disrupted GH action in adult mice resulted in sexual dimorphic effects suggesting that GH reduction at older ages may have gerotherapeutic effects.


Subject(s)
Insulin/metabolism , Receptors, Somatotropin/genetics , Aging , Animals , Female , Male , Mice , Signal Transduction
12.
J Biol Chem ; 296: 100588, 2021.
Article in English | MEDLINE | ID: mdl-33774052

ABSTRACT

Excess circulating human growth hormone (hGH) in vivo is linked to metabolic and growth disorders such as cancer, diabetes, and acromegaly. Consequently, there is considerable interest in developing antagonists of hGH action. Here, we present the design, synthesis, and characterization of a 16-residue peptide (site 1-binding helix [S1H]) that inhibits hGH-mediated STAT5 phosphorylation in cultured cells. S1H was designed as a direct sequence mimetic of the site 1 mini-helix (residues 36-51) of wild-type hGH and acts by inhibiting the interaction of hGH with the human growth hormone receptor (hGHR). In vitro studies indicated that S1H is stable in human serum and can adopt an α-helix in solution. Our results also show that S1H mitigates phosphorylation of STAT5 in cells co-treated with hGH, reducing intracellular STAT5 phosphorylation levels to those observed in untreated controls. Furthermore, S1H was found to attenuate the activity of the hGHR and the human prolactin receptor, suggesting that this peptide acts as an antagonist of both lactogenic and somatotrophic hGH actions. Finally, we used alanine scanning to determine how discrete amino acids within the S1H sequence contribute to its structural organization and biological activity. We observed a strong correlation between helical propensity and inhibitory effect, indicating that S1H-mediated antagonism of the hGHR is largely dependent on the ability for S1H to adopt an α-helix. Taken together, these results show that S1H not only acts as a novel peptide-based antagonist of the hGHR but can also be applied as a chemical tool to study the molecular nature of hGH-hGHR interactions.


Subject(s)
Peptides/pharmacology , Receptors, Somatotropin/antagonists & inhibitors , Cell Line , Humans , Intracellular Space/drug effects , Intracellular Space/metabolism , Models, Molecular , Peptides/chemistry , Phosphorylation/drug effects , Protein Conformation , Receptors, Somatotropin/chemistry , Receptors, Somatotropin/metabolism , STAT5 Transcription Factor/metabolism
13.
Pituitary ; 24(3): 438-456, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33459974

ABSTRACT

Progress made in the years of aging research have allowed the opportunity to explore potential interventions to slow aging and extend healthy lifespan. Studies performed in yeast, worms, flies and mice subjected to genetic and pharmacological interventions have given insight into the cellular and molecular mechanisms associated with longevity. Furthermore, it is now possible to effectively modulate pathways that slow aging at different stages of life (early life or at an adult age). Interestingly, interventions that extend longevity in adult mice have had sex-specific success, suggesting a potential link between particular pathways that modulate aging and sex. For example, reduction of the growth hormone (GH)/insulin-like growth factor-1 (IGF-1) axis at an adult age extends lifespan preferentially in females. Moreover, several postnatal dietary interventions tested by the 'Intervention Testing Program (ITP)' from the National Institute of Aging (NIA) have shown that while pharmacological interventions like rapamycin affect the IGF-1/insulin pathway and preferentially extend lifespan in females; dietary compounds that target other cellular pathways are effective only in male mice-indicating mutually exclusive sex-specific pathways. Therefore, a combination of interventions that target non-overlapping aging-related pathways appears to be an effective approach to further extend healthy lifespan in both sexes. Here, we review the germline and postnatal mouse lines that target the GH/IGF-1 axis as a mechanism to extend longevity as well as the dietary compounds that tested positive in the NIA program to increase lifespan. We believe that the interventions reviewed in this paper could constitute feasible combinations for an extended healthy lifespan in both male and female mice.


Subject(s)
Human Growth Hormone , Insulin-Like Growth Factor I/metabolism , Longevity , Aging , Animals , Female , Growth Hormone , Male , Mice
14.
Rev Endocr Metab Disord ; 22(1): 3-16, 2021 03.
Article in English | MEDLINE | ID: mdl-33033978

ABSTRACT

Nearly one century of research using growth hormone deficient (GHD) mouse lines has contributed greatly toward our knowledge of growth hormone (GH), a pituitary-derived hormone that binds and signals through the GH receptor and affects many metabolic processes throughout life. Although delayed sexual maturation, decreased fertility, reduced muscle mass, increased adiposity, small body size, and glucose intolerance appear to be among the negative characteristics of these GHD mouse lines, these mice still consistently outlive their normal sized littermates. Furthermore, the absence of GH action in these mouse lines leads to enhanced insulin sensitivity (likely due to the lack of GH's diabetogenic actions), delayed onset for a number of age-associated physiological declines (including cognition, cancer, and neuromusculoskeletal frailty), reduced cellular senescence, and ultimately, extended lifespan. In this review, we provide details about history, availability, growth, physiology, and aging of five commonly used GHD mouse lines.


Subject(s)
Disease Models, Animal , Growth Hormone/deficiency , Aging , Animals , Humans , Insulin Resistance , Mice , Obesity
15.
Cancers (Basel) ; 12(12)2020 Dec 04.
Article in English | MEDLINE | ID: mdl-33291663

ABSTRACT

Growth hormone (GH) and the GH receptor (GHR) are expressed in a wide range of malignant tumors including melanoma. However, the effect of GH/insulin-like growth factor (IGF) on melanoma in vivo has not yet been elucidated. Here we assessed the physical and molecular effects of GH on mouse melanoma B16-F10 and human melanoma SK-MEL-30 cells in vitro. We then corroborated these observations with syngeneic B16-F10 tumors in two mouse lines with different levels of GH/IGF: bovine GH transgenic mice (bGH; high GH, high IGF-1) and GHR gene-disrupted or knockout mice (GHRKO; high GH, low IGF-1). In vitro, GH treatment enhanced mouse and human melanoma cell growth, drug retention and cell invasion. While the in vivo tumor size was unaffected in both bGH and GHRKO mouse lines, multiple drug-efflux pumps were up regulated. This intrinsic capacity of therapy resistance appears to be GH dependent. Additionally, epithelial-to-mesenchymal transition (EMT) gene transcription markers were significantly upregulated in vivo supporting our current and recent in vitro observations. These syngeneic mouse melanoma models of differential GH/IGF action can be valuable tools in screening for therapeutic options where lowering GH/IGF-1 action is important.

16.
J Neuroendocrinol ; 32(11): e12893, 2020 11.
Article in English | MEDLINE | ID: mdl-33043505

ABSTRACT

Bovine growth hormone (bGH) transgenic mice mimic the clinical condition of acromegaly, having high circulating growth hormone (GH) levels. These mice are giant, have decreased adipose tissue (AT) mass, impaired glucose metabolism and a shortened lifespan. The detrimental effects of excess GH have been suggested, in part, to be a result of its depot-specific actions on AT. To investigate this relationship, we evaluated gene expression, biological mechanisms, cellular pathways and predicted microRNA (miRNA) in two AT depots (subcutaneous [Subq] and epididymal [Epi]) from bGH and littermate controls using RNA sequencing analysis. Two analyses on the differentially expressed genes (DEG) were performed: (i) comparison of the same AT depot between bGH and wild-type (WT) mice (genotype comparison) and (ii) comparison of Subq and Epi AT depots within the same genotype (depot comparison). For the genotype comparison, we found a higher number of significant DEG in the Subq AT depot of bGH mice compared to WT controls, corroborating previous reports that GH has a greater impact on the Subq depot. Furthermore, most of the DEG in bGH mice were not shared by WT mice, suggesting that excess GH induces the expression of genes not commonly present in AT. Through gene ontology and pathway analysis, the genotype comparison revealed that the DEG of the Subq depot of bGH mice relate to fatty acid oxidation, branched-chain amino acid degradation and the immune system. Additionally, the AT depot comparison showed that the immune cell activation and T-cell response appear up-regulated in the Subq compared to the Epi AT depot. The miRNA prediction also suggested a modulation of T-cell-related biological process in Subq. In summary, the present study provides a unique resource for understanding the specific differences in gene expression that are driven by both excess GH action and AT depot location.


Subject(s)
Adipose Tissue/metabolism , Growth Hormone/genetics , Growth Hormone/metabolism , Amino Acids, Branched-Chain/metabolism , Animals , Cattle , Epididymis/metabolism , Fatty Acids/metabolism , Gene Expression Regulation/genetics , Gene Expression Regulation/physiology , Genotype , Immune System/physiology , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , MicroRNAs/biosynthesis , MicroRNAs/genetics , Oxidation-Reduction , Signal Transduction/genetics , Subcutaneous Fat/metabolism , T-Lymphocytes/immunology , T-Lymphocytes/metabolism
17.
Endocrinology ; 161(8)2020 08 01.
Article in English | MEDLINE | ID: mdl-32556100

ABSTRACT

A rare 20K isoform of GH-V (here abbreviated as GHv) was discovered in 1998. To date, only 1 research article has characterized this isoform in vivo, observing that GHv treatment in male high-fat fed rats had several GH-like activities, but unlike GH lacked diabetogenic and lactogenic activities and failed to increase IGF-1 or body length. Therefore, the current study was conducted to further characterize the in vivo activities of GHv in a separate species and in a GH-deficient model (GH-/- mice) and with both sexes represented. GHv-treated GH-/- mice had significant increases to serum IGF-1, femur length, body length, body weight, and lean body mass and reduced body fat mass similar to mice receiving GH treatment. GH treatment increased circulating insulin levels and impaired insulin sensitivity; in contrast, both measures were unchanged in GHv-treated mice. Since GHv lacks prolactin receptor (PRLR) binding activity, we tested the ability of GH and GHv to stimulate the proliferation of human cancer cell lines and found that GHv has a decreased proliferative response in cancers with high PRLR. Our findings demonstrate that GHv can stimulate insulin-like growth factor-1 and subsequent longitudinal body growth in GH-deficient mice similar to GH, but unlike GH, GHv promoted growth without inhibiting insulin action and without promoting the growth of PRLR-positive cancers in vitro. Thus, GHv may represent improvements to current GH therapies especially for individuals at risk for metabolic syndrome or PRLR-positive cancers.


Subject(s)
Growth Hormone/genetics , Human Growth Hormone/pharmacology , Placental Hormones/pharmacology , Animals , Body Composition/drug effects , Body Weight/drug effects , Female , Growth Hormone/deficiency , Hormone Replacement Therapy , Human Growth Hormone/isolation & purification , Human Growth Hormone/metabolism , Human Growth Hormone/therapeutic use , Humans , Mice , Mice, Inbred C57BL , Mice, Knockout , Placenta/chemistry , Placenta/metabolism , Placental Hormones/therapeutic use , Pregnancy , Protein Isoforms
18.
Cancers (Basel) ; 11(9)2019 Sep 12.
Article in English | MEDLINE | ID: mdl-31547367

ABSTRACT

Growth hormone (GH) facilitates therapy resistance in the cancers of breast, colon, endometrium, and melanoma. The GH-stimulated pathways responsible for this resistance were identified as suppression of apoptosis, induction of epithelial-to-mesenchymal transition (EMT), and upregulated drug efflux by increased expression of ATP-binding cassette containing multidrug efflux pumps (ABC-transporters). In extremely drug-resistant melanoma, ABC-transporters have also been reported to mediate drug sequestration in intracellular melanosomes, thereby reducing drug efficacy. Melanocyte-inducing transcription factor (MITF) is the master regulator of melanocyte and melanoma cell fate as well as the melanosomal machinery. MITF targets such as the oncogene MET, as well as MITF-mediated processes such as resistance to radiation therapy, are both known to be upregulated by GH. Therefore, we chose to query the direct effects of GH on MITF expression and activity towards conferring chemoresistance in melanoma. Here, we demonstrate that GH significantly upregulates MITF as well as the MITF target genes following treatment with multiple anticancer drug treatments such as chemotherapy, BRAF-inhibitors, as well as tyrosine-kinase inhibitors. GH action also upregulated MITF-regulated processes such as melanogenesis and tyrosinase activity. Significant elevation in MITF and MITF target gene expression was also observed in mouse B16F10 melanoma cells and xenografts in bovine GH transgenic (bGH) mice compared to wild-type littermates. Through pathway inhibitor analysis we identified that both the JAK2-STAT5 and SRC activities were critical for the observed effects. Additionally, a retrospective analysis of gene expression data from GTEx, NCI60, CCLE, and TCGA databases corroborated our observed correlation of MITF function and GH action. Therefore, we present in vitro, in vivo, and in silico evidence which strongly implicates the GH-GHR axis in inducing chemoresistance in human melanoma by driving MITF-regulated and ABC-transporter-mediated drug clearance pathways.

19.
Cancer Drug Resist ; 2: 827-846, 2019.
Article in English | MEDLINE | ID: mdl-32382711

ABSTRACT

Pituitary derived and peripherally produced growth hormone (GH) is a crucial mediator of longitudinal growth, organ development, metabolic regulation with tissue specific, sex specific, and age-dependent effects. GH and its cognate receptor (GHR) are expressed in several forms of cancer and have been validated as an anti-cancer target through a large body of in vitro, in vivo and epidemiological analyses. However, the underlying molecular mechanisms of GH action in cancer prognosis and therapeutic response had been sparse until recently. This review assimilates the critical details of GH-GHR mediated therapy resistance across different cancer types, distilling the therapeutic implications based on our current understanding of these effects.

20.
Eur J Endocrinol ; 178(5): R155-R181, 2018 May.
Article in English | MEDLINE | ID: mdl-29459441

ABSTRACT

Growth hormone (GH) is produced primarily by anterior pituitary somatotroph cells. Numerous acute human (h) GH treatment and long-term follow-up studies and extensive use of animal models of GH action have shaped the body of GH research over the past 70 years. Work on the GH receptor (R)-knockout (GHRKO) mice and results of studies on GH-resistant Laron Syndrome (LS) patients have helped define many physiological actions of GH including those dealing with metabolism, obesity, cancer, diabetes, cognition and aging/longevity. In this review, we have discussed several issues dealing with these biological effects of GH and attempt to answer the question of whether decreased GH action may be beneficial.


Subject(s)
Endocrine System Diseases/genetics , Endocrine System Diseases/physiopathology , Growth Hormone/physiology , Human Growth Hormone/physiology , Mice, Knockout/genetics , Receptors, Somatotropin/genetics , Animals , Endocrine System Diseases/psychology , Humans , Laron Syndrome/genetics , Laron Syndrome/physiopathology , Longevity , Mice
SELECTION OF CITATIONS
SEARCH DETAIL
...